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Abstract. In recent years there has been a closer interrelationship between several scientific areas trying to
obtain a more realistic and rich explanation of the natural and social phenomena. Among these it should be
emphasized the increasing interrelationship between physics and financial theory. In this field the analysis
of uncertainty, which is crucial in financial analysis, can be made using measures of physics statistics and
information theory, namely the Shannon entropy. One advantage of this approach is that the entropy is
a more general measure than the variance, since it accounts for higher order moments of a probability
distribution function. An empirical application was made using data collected from the Portuguese Stock
Market.

PACS. 89.70.+c Information theory and communication theory (for telecommunications, see 84.40.Ua;
for optical communications, see 42.79.Sz) – 89.65.Gh Economics; econophysics, financial markets, business
and management

1 Introduction

The application of mathematical and physics models to
finance goes back to Bachelier in 1900, where it tests the
hypothesis that stock prices follow a random walk. How-
ever this simple version of the model did not account for
important characteristics of price variations, such as the
occurrence of crashes, nonlinear serial dependence, etc.
Bachelier assumed that the price variations follow a nor-
mal distribution, constant over time, and do not pay atten-
tion to extreme events. However, the empirical evidence
has shown that stock prices seldomly behave in such a way
as described by Bachelier.

The stock markets are usually complex systems, be-
cause they are open systems where innumerous subsys-
tems act and interact in a nonlinear and dynamic way,
constituting an attraction for the physicists that studied
the working of financial markets using different methods
than those used by traditional economists.

Bonanno et al. [1] consider that the financial markets
show several levels of complexity that may occurred for
being systems composed by agents that interact nonlin-
early between them. These authors, among others, con-
sider that the traditional models of asset pricing (CAPM
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and APT) failed because the basic assumptions of these
models are not verified empirically.

The entropy is a measure of dispersion, uncertainty,
disorder and diversification used in dynamic processes, in
statistics and information theory, and has been increas-
ingly adopted in financial theory [2–8].

In addition to the studies mentioned above, Bouchaud
et al. [9] have used entropy as an integrating measure
in the process of portfolio selection based on the mean-
variance model of Markowitz. This is because information
is imperfect and the theoretical assumptions of portfolio
selection models do not apply in the reality. The authors
suggest the use of entropy with the purpose of obtain-
ing a minimum diversification and, at the same time, an
acceptable risk level to the investor. In a slightly differ-
ent context, Fernholz [10] and Samperi [11] analysed the
entropy as a measure of diversification in financial mar-
kets. Gulko [12] analyses market equilibrium by building
a model where entropy is maximized subject to certain
restrictions. He defends the “entropy pricing theory” as
the main characteristic of market efficiency.

The use of entropy as a measure of uncertainty in fi-
nance appears to have many potentialities and a vast field
of development, both in theoretical and empirical work.
In line with the above arguments, this paper examines
the ability of entropy as a measure of uncertainty in port-
folio management applied to the Portuguese stock market,
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highlighting the fact that entropy verifies the effect of di-
versification.

In this article, the notion of uncertainty is related with
the greater or lesser difficulty to predict the future. Gen-
erally, it is normal to relate the variance or the standard-
deviation and the VaR (Value-at-Risk) as the main risk
and uncertainty measures in finance. However, some au-
thors (e.g. [13–15]) alert for the fact that these measures
can fail in specific situations as a measure of uncertainty,
since they need that the probability distributions are sym-
metric and neglect the possibility of extreme events such
as the existence of fat-tails.

2 Theoretical background

Suppose that we have a set of possible events whose prob-
abilities of occurrence are p1, p2, ..., pn and H is a measure
of uncertainty. According to [16], a good measure of un-
certainty H = H(p1, ..., pn) should satisfy the following
properties:

1. H should be continuous in pi, i = 1, ..., n;
2. If pi = 1/n, then H should be a monotonic increasing

function of n;
3. H is maximized in a uniform probability distribution

context;
4. H should be additive;
5. H should be the weighted sum of the individual values

of H .

According to [16] one measure that satisfies all these
properties is the entropy which is defined as H (X) =
−∑

ipi log pi. When the random variable has a continu-
ous distribution, and pX(x) is the density function of the
random variable X , the entropy is given by

H (X) = −
∫

pX(x) log pX(x)dx. (1)

The properties of the entropy of continuous and dis-
crete distributions are mainly alike. In particular we
have [16,17]:

(a) if X is limited to a certain volume v in its space, then
H(X) is a maximum and is equal to log v when pX(x)
is constant, 1/v, in the volume;

(b) for any two variables X and Y , we have H (X, Y ) ≤
H (X) + H (Y ) where the equality holds if (and
only if) X and Y are statistically independent, i.e.
pX,Y (x, y) = pX(x)pY (y);

(c) the joint entropy can be given by H (X, Y ) = H (X)+
H (Y |X) = H (Y ) + H (X |Y ) ,since H (X) + H (Y ) ≥
H (X, Y ) , then H (Y ) ≥ H (Y |X) and H (X) ≥
H (X |Y ) .

The assumption that the data and the residuals follow a
normal distribution is very common in portfolio manage-
ment and regression analysis. Thus, the equation used to

estimate parametrically the entropy of a normal distribu-
tion, NH (X), is

NH (X) =
∫

pX(x) log
√

2πσdx

+
∫

pX(x)
(x − x)2

2σ2
dx = log

(√
2πeσ

)
. (2)

Arafat et al. [18] consider that a measure of uncertainty
should attend to the following properties: (i) Symme-
try, that is H (X) = H (1 − X) ; and (ii) Valuation:
H (X ∪ Y )+H (X ∩ Y ) = H (X)+H (Y ) . These authors
discuss combined methods of uncertainty and conclude
that entropy can be a good measure of uncertainty.

One of the difficulties to estimate the mutual informa-
tion on the basis of empirical data lies on the fact that
the underlying pdf is unknown. To overcome this prob-
lem, there are essentially three different methods to es-
timate mutual information: histogram-based estimators,
kernel-based estimators and parametric methods1. In or-
der to minimize the bias that may occur, we will use the
marginal equiquantization estimation process, proposed
by Darbellay [19].

The introduction of entropy as a measure of uncer-
tainty in finance goes back to Philippatos and Wilson [3],
which present a comparative analysis between the be-
haviour of the standard-deviation and the entropy on port-
folio management. These authors conclude that entropy
is more general and has some advantages facing to the
standard-deviation. According to [20] the two main mea-
sures of uncertainty are entropy and variance, because en-
tropy is a concave function allows its use as an uncertainty
function.

3 Entropy and diversification effect:
an example

Historically, the variance has had a fundamental role in
the analysis of risk and uncertainty. However, according
to [14], entropy can be an alternative measure of dispersion
and in addition Soofi [13] considers that the interpretation
of the variance as a measure of uncertainty must be done
with some precaution.

The entropy is a measure of disparity of the den-
sity pX (x) from the uniform distribution. It measures un-
certainty in the sense of “utility” of using pX (x) in place of
the uniform distribution. The variance measures an aver-
age of distances of outcomes of the probability distribution
from the mean. According to [21], both measures reflect
concentration but their respective metrics of concentra-
tion are different. Unlike the variance that measures con-
centration only around the mean, the entropy measures

1 The histogram-based estimators are divided in two groups:
equidistant cells and equiprobable cells, i.e. marginal equiquan-
tisation (see e.g. [19]). The second approach presents some ad-
vantages, since it allows for a better adequacy to the data and
maximizes mutual information [19].
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diffuseness of the density irrespective of the location of
concentration.

In terms of mathematical properties, entropy [H (X)]
is non-negative in the discrete case. In the discrete case,
H (X) is invariant under one-to-one transformations of X ,
but the variance is not. For the continuous case, neither
the entropy nor the variance are invariant under one-to-
one transformations. The entropy of a continuous random
variable X takes values in ]−∞, +∞[ [16].

Ebrahimi et al. [21] examined the role of variance and
entropy in ordering distributions and random prospects,
and conclude that there is no universal relationship be-
tween these measures in terms of ordering distributions.
These authors found that, under certain conditions, the
order of the variance and entropy is similar when continu-
ous variables are transformed and show (using a Legendre
series expansion) that the entropy depends on many more
parameters of a distribution than the variance. A Legen-
dre series expansion reveals that entropy may be related
to higher-order moments of a distribution which, unlike
the variance, could offer a much better characterization of
pX (x) since it uses more information about the probabil-
ity distribution than the variance.

In this paper we examine the sensitivity of entropy
to the effect of diversification. The risk of a portfolio
can be splitted into specific risk and systematic risk,
that is not diversifiable. Using entropy we can obtain a
similar type of information, since H (X) = I (X, Y ) +
H (X |Y ) , where I (.) is the mutual information between X
and Y and may be comparable with the systematic risk
and H (.|.) is the conditional entropy that can be compa-
rable with the specific risk. We must emphasize that the
measures of information theory are not directly compara-
ble to the analysis of variance in metric terms.

It is important to note some properties of the vari-
ance (and standard-deviation) and entropy as measures
of uncertainty. The standard-deviation is a convex func-
tion, which according to the Jensen inequality E [σ (X)] ≥
σ [(EX)]2. This property allows the variance and the
standard-deviation to be used as risk measures in stock
portfolios, since they take into account the effect of
diversification.

The entropy is a concave function and has a maxi-
mum for most of the probability distributions, and this
fact leads us to think that entropy will not satisfy the ef-
fect of diversification. However, we must note that entropy
is not a function of the values of the variables but the prob-
ability itself and the property H (X, Y ) ≤ H (X) + H (Y )
can bring some hope in this way.

In this paper we perform a similar analysis to that pre-
sented by Elton and Gruber [22]. These authors showed
that diversification is a factor of minimization of the
specific risk (measured by the standard-deviation). They
made a random selection of the assets to compose portfo-
lios and the only premise is the fact that the proportion
invested in each asset is 1/N , being N the number of assets
in the portfolio. We use daily closing prices of 23 stocks

2 The equality occurs when the linear correlation coefficient
between the variables is 1.
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Fig. 1. Comparative analysis of the empirical entropy (H) and
the normal entropy (NH) for portfolios randomly selected. En-
tropy is measured in nats because we use natural logarithms.

rated on the Portuguese stock market (Euronext Lisbon),
spanning from 28/06/1995 to 30/12/2002, which corre-
sponds to 1856 observations per stock, in order to com-
pute the rates of return. The statistical analysis of these
time series revealed that we must reject the null that the
empirical distributions are normal, since they show high
levels of kurtosis and skewness.

In order to compare the behaviour of entropy with the
standard-deviation in a coherent way, we use the normal
entropy (Eq. (2)), since the normal entropy is a function
of the standard-deviation.

Our results (see Fig. 1) show that the entropy and the
standard-deviation tend to decrease when we include one
more asset in the portfolio. This fact allows us to conclude
that entropy is sensitive to the effect of diversification.
These results can be explained by the fact that when the
number of assets in the portfolio increases, the number of
possible states of the system (portfolio) declines progres-
sively and the uncertainty about that portfolio tends to
fall. Besides, we verify that the entropy respects the con-
dition of subadditivity suggested by Reesor and McLeish
[23], where H [θX ] + H [(1 − θ)Y ] ≥ H [θX + (1 − θ)Y ],
being θ = 1/N.

We must highlight the fact that, in this example, the
normal entropy assumes always higher values than the em-
pirical entropy. This means that the predictability level of
each portfolio is higher than the one assumed by the nor-
mal distribution.

From this preliminary analysis, we can conclude that
entropy observes the effect of diversification and is a
more general uncertainty measure than the variance, since
it uses much more information about the probability
distribution.

4 Final remarks

This paper analyses the use of entropy as a measure of
uncertainty in portfolio management. This can be a com-
plementary way to the traditional mean-variance models,
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whose assumptions are typically quite restrictive. Our ap-
proach takes into account the higher-order moments of
the empirical probability distributions, rather than just
the variance that only uses the second moment.

The results suggest that entropy is sensitive to the ef-
fect of diversification and is apparently a more general
measure of uncertainty than the variance.
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A. Procházka, J. Uhĺır, P.J.W. Rayner, N.G. Kingsbury
(Birkhauser, Boston, 1998), pp. 249–262

20. D. Lawrence, The Economic Value of Information
(Springer, New York, 1999)

21. N. Ebrahimi, E. Maasoumi, E. Soofi, J. Econometrics 90,
2, 317 (1999)

22. E.J. Elton, M.J. Gruber, Modern Portfolio Theory and
Investment Analysis (Jonh Wiley & Sons, New York, 1995)
2nd. edn.

23. R. Reesor, D. McLeish, Risk, Entropy and the
Transformations of Distributions, preprint in Working
Paper 2002-11, Bank of Canada (2002)


